Sunday, December 18, 2011

Submit Url Add Link Add Your Link Submit Url To Our Free Reciprocal Links Exchange Directory

Thursday, December 8, 2011

Renewable Energy

Renewable Energy is electric power that is generated from renewable sources of energy lsuch as: wind power, solar power, geothermal energy, and hydroelectric energy. Renewable energy is easily replenished by nature and is a cleaner, non-carbon polluting source of energy like various fossil fuels. Renewable Energy sources are often referred to as emerging energy technologies.

Recently, the cost of leading renewable energy technologies have dropped so much that renewable energy technologies are competing with traditional sources of energy. The best advice is to consider your options. Lots of intelligent information is available from a variety of leading sources, like renewable energy associations, consultants and wind and solar equipment manufacturers.

Renewable energy electricity production is expected to expand significantly over the coming years in the developed world. This represents an opportunity for developed countries (large electricity consumers) to develop and commercialize new and competitive technologies to the traditional "fossil fuel" based technologies and thereby manufacture products and offer services in support of a growing industry.

Renewable energy is power that is generated from natural resources such as sunlight (through photovoltaic solar cells), wind (through wind turbines), water (through dams and hydroelectric power plants), came from renewable energy sources, In 2006, about 18 per cent of the world's electricity consumption came from renewable energy technologies, with 13 per cent coming from traditional biomass, such as wood-burning. Hydroelectricity was the next largest renewable source, providing 3 per cent (15 per cent of global electricity generation, followed by solar hot water/heating, which contributed 1.3 per cent. Modern technologies, such as geothermal energy, wind power, solar power, and ocean energy together provided some 0.8 per cent of total electricity generation.

The term "renewable energy" may not be equal to the term “green” energy. This is because typically the term green energy refers to energy from renewable systems that are smaller than conventional, large-scale electric power generation, including various renewable energy systems. For example, some large-scale hydro-electric projects require large dams and vast reservoirs that flood huge tracks of wilderness. Conversely, low-capacity hydroelectric plants use "low head" water as it turns downstream in order to generate electric power. This results in less impact on the environment.

Although renewable energy is quickly replenished, some of these energies depend greatly on whether the sun is shining or the wind is blowing.

When renewable energy is converted into electric power production, it is often times transmitted into an electric power grid and joins the electricity "pool", including non-renewable energy sources of power. Government and electric utilities are working to increase the overall proportion of renewable energy electricity produced by renewable energy.

Governments and energy experts are taking a new interest in renewable energy for several reasons. Electric power production from various renewable energy sources produces much fewer global warming, carbon dioxide and other toxic pollutantts, which are having an impact on the world's changing climate. Also, renewable energy usually adds fewer other gaseous pollutants to the atmosphere, including the following:

sulphur dioxide and nitrogen oxide gases that form the largest compontents of "acid rain";
fossil fuel particulate matter, which combined with ground-level ozone, constitutes "smog" on hot summer days;
mercury, which is claimed to transformed in the environment into a highly toxic substance and a threat to all living creatures.
When the world uses low-impact renewable energy sources, we help to protect the environment. When large-scale non-renewable (fossil fuel) energy projects are developed, they have the potentiality to affect watersheds, migration animal and bird routes, etc.

Electrical Transformers

Electrical transformers are used to "transform" voltage from one level to another, usually from a higher voltage to a lower voltage. They do this by applying the principle of magnetic induction between coils to convert voltage and/or current levels.

In this way, electrical transformers are a passive device which transforms alternating current (otherwise known as "AC") electric energy from one circuit into another through electromagnetic induction. An electrical transformer normally consists of a ferromagnetic core and two or more coils called "windings". A changing current in the primary winding creates an alternating magnetic field in the core. In turn, the core multiplies this field and couples the most of the flux through the secondary tranformer windings. This in turn induces alternating voltage (or emf) in each of the secondary coils.


Electrical transformers can be configured as either a single-phase or a three-phase configuration. There are several important specifications to specify when searching for electrical transformers. These include: maximum secondary voltage rating, maximum secondary current rating, maximum power rating, and output type. An electrical transformer may provide more than one secondary voltage value. The Rated Power is the sum of the VA (Volts x Amps) for all of the secondary windings. Output choices include AC or DC. For Alternating Current waveform output, voltage the values are typically given in RMS values. Consult manufacturer for waveform options. For direct current secondary voltage output, consult manufacturer for type of rectification.

Cores can be constructed as either a toroidal or laminated. Toroidal units typically have copper wire wrapped around a cylindrical core so the magnetic flux, which occurs within the coil, doesn't leak out, the coil efficiency is good, and the magnetic flux has little influence on other components. Laminated refers to the laminated-steel cores. These steel laminations are insulated with a nonconducting material, such as varnish, and then formed into a core that reduce electrical losses. There are many types. These include autotransformer, control, current, distribution, general-purpose, instrument, isolation, potential (voltage), power, step-up, and step-down. Mountings include chassis mount, dish or disk mount, enclosure or free standing, h frame, and PCB mount.

Wind Power

Wind power can be an excellent complement to a solar power system. Here in Colorado, when the sun isn't shining, the wind is usually blowing. Wind power is especially helpful here in the winter to capture both the ferocious and gentle mountain winds during the times of least sunlight and highest power use. In most locations, wind is not suitable as the only source of power, it simply fills in the gaps left by solar power quite nicely.
Building a wind generator from scratch is not THAT difficult of a project. You will need a shop with basic power and hand tools, and some degree of dedication. Large wind generators of 2000 Watts and up are a major project needing very strong construction, but smaller ones in the 700-1000 Watt, 8-11 foot range can be built fairly easily. In fact, it is highly recommended that you tackle a smaller wind turbine before even thinking about building a large one. You'll need to be able to cut and weld steel, and a metal lathe can be handy

Electrical Testing Equipments

Digital Multimeters
With a good wiring diagram and a good multimeter, a trained electrical professional can find the cause of almost any problem.

There are two basic types of multimeters, digital and analog. Analog multimeters have a needle and digital multimeters have an LCD or a LED display. WIth today's demand for accuracy in testing electrical systems, it makes more sense to have a digital multimeter but an analog multimeter still has its uses.

This article focuses on digital multimeters. A digital multimeter will have many functions built into it. As with any tool or piece of equipment, it is necessary to make certain you read and follow digital multimeter instructions and cautions. This will protect you and your electrical equipment.

All digital multimeters will test for voltage, current and resistance. These are the three functions needed when trying to diagnose a problem. When you purchase a digital multimeter, one of the most important things to look at is the meter's impedance, which is the meter's operating resistance. Most digital multimeters have very high impedance. Since the meter is part of the circuit being tested, its resistance will affect the current flow through that circuit.

Typical Amperage Test
If a digital multimeter has a very high impedance or resistance it will cause a slight increase in the circuit's current. This becomes a concern when you test electronic systems because the increased current draw can damage the components being tested or, at the very least, alter the readings or change a sensor signal. It's best to get a meter that has an impedance of at least 10 megaohms. That way the current draw is so low it becomes invisible.

Almost all digital multimeters have an "auto-range" features that will automatically select the proper range. Some digital multimeters will let you override this feature and let you manually select the range you want. Some DMMs do not have this option and must be set manually. Check the documentation that came with your digital multimeter and make sure you know and understand its different ranges.

Most digital multimeters that have an auto-range will have the setting either before or after the reading. Ohms are measured in multiples of ten and given the designation 'K' or 'M' with 'K' standing for 1,000 ohms and 'M' standing for 100,000,000 ohms. Amps would be displayed as mA, milliamps or 1/1000 of an amp or A for full amps. Volts will also be displayed as mV or volts. When you take a reading with a DMM that has auto-range, be sure you note at what range the meter is on. You could mistake 10 mA as 10 amps.

Typical Voltage Test
Most digital multimeters that have auto-range will show the reading with a decimal point. A reading of 1.2 amps will be 12 amps if you ignore the decimal point.

Digital multimeters do have a limit on how much current they can test. Usually this limit is printed at the point where the red lead plugs into the meter. If it says, "10 Amps Max" then there is a 10-amp fuse inside the meter that will blow if the current is above 10 amps. If you take out the 10-amp fuse and put in a 20-amp fuse, you will burn out the meter beyond repair. I would suggest buying a DMM that will handle at least 20 amps for automotive testing.

Many digital multimeters have an inductive pickup that clamps around the wire being tested. These ammeters measure amperage based on the magnetic field created by the current flowing through the wire. DMMs that have an inductive pickup usually will read higher current and have a higher limit. Since this type of meter doesn't become part of the circuit you do not need to disconnect any wires to get a reading.

Voltmeters are usually connected across a circuit. You can perform two types of tests with a voltmeter. If you connect it from the positive terminal of a component to ground, you will read the amount of voltage there is to operate the component. It will usually read 0 volts or full voltage. If you test a component that is supposed to have 12 volts, but there is 0 volts, there is an open in the circuit. This is where you will have to trace back until you locate the open.

Typical Resistance Test
Another useful function of the digital multimeter is the ohmmeter. An ohmmeter measures the electrical resistance of a circuit. If you have no resistance in a circuit, the ohmmeter will read 0. If you have an open in a circuit, it will read infinite.

An ohmmeter uses its own battery to conduct a resistance test. Therefore there must be no power in the circuit being tested or the ohmmeter will become damaged.

When a component is tested, the red lead is placed on the positive side and the black lead on the negative side. Current from the battery will flow through the component and the meter will determine the resistance by how much the voltage drops. If the component has an open the meter will flash "1.000" or "OL" to show an open or infinite resistance. A reading of 0 ohms indicates that there is no resistance in the component and it is shorted. If a component is supposed to have 1,000 ohms of resistance and a test shows it has 100 ohms of resistance, which indicates a short. If it reads infinite, then it is open.

Analog ohmmeters will need to be calibrated before they are used. There is an "ohms adjust" screw on the meter used to do the calibration. To calibrate the ohmmeter, you touch the red and black leads together and turn the adjusting screw until the needle is at 0. You should do this each time you use the ohmmeter and each time you change scales. DMMs do not need to be calibrated since they will self calibrate themselves. Holding the two leads together will confirm that they are, indeed, calibrated.

To check a wire in a harness you connect one lead at one end of the wire and the other lead to the other end of the wire. If the wire is good you will get a reading. If it is broken, you will get an infinite reading. This is useful in determining why a particular component is not getting power. Just be sure you isolate the wire from the circuit so your ohmmeter does not get damaged.

These are the three basic functions of all digital multimeters. Some digital multimeters will have many other features such as averaging where it will take a reading over a period of time and average it out. Some have a MIN/MAX feature that will hold the highest/lowest reading. Some will do specific diode tests, measure injector pulse times and even have thermometers.